www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Terme | Regeln/Lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Terme | Regeln/Lösen
Terme | Regeln/Lösen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Terme | Regeln/Lösen: Wie könnte man weiter machen?
Status: (Frage) beantwortet Status 
Datum: 12:45 Do 14.09.2006
Autor: KnockDown

Aufgabe
[mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

Vereinfache so weit wie möglich.



Buchlösung:
-----------

a-b+c

Hi,

ich habe mal wieder einige Aufgaben gerechnet und da bin ich wieder auf zwei gestoßen bei denen ich weider nicht weiterkomme :-/ Ich werde jetzt erstmal die eine Aufgabe euch zeigen, da ich die zweite noch etwas versuchen möchte.

1. [mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

2. [mm] \bruch{a^2 - 2ab+b^2 - c^2}{a-b-c} [/mm]

Ab hier hänge ich schon leider :-( Vielleicht könnt ihr mir ein Tip geben was ich machen könnte?


Danke für eure Hilfe!

        
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Do 14.09.2006
Autor: M.Rex


> [mm]\bruch{(a-b)^2 - c^2}{a-b-c}[/mm]
>  
> Vereinfache so weit wie möglich.
>  
>
>
> Buchlösung:
>  -----------
>  
> a-b+c
>  Hi,
>  
> ich habe mal wieder einige Aufgaben gerechnet und da bin
> ich wieder auf zwei gestoßen bei denen ich weider nicht
> weiterkomme :-/ Ich werde jetzt erstmal die eine Aufgabe
> euch zeigen, da ich die zweite noch etwas versuchen
> möchte.
>  
> 1. [mm]\bruch{(a-b)^2 - c^2}{a-b-c}[/mm]
>  
> 2. [mm]\bruch{a^2 - 2ab+b^2 - c^2}{a-b-c}[/mm]
>  
> Ab hier hänge ich schon leider :-( Vielleicht könnt ihr mir
> ein Tip geben was ich machen könnte?
>  
>
> Danke für eure Hilfe!


Hallo und [willkommenmr]

[mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

Wende im Zähler doch mal die Dritte Binomische Formel an.
Dann steht dort.

[mm] \bruch{((a-b)+c)((a-b)-c}{a-b-c} [/mm]

Nun noch einmal kürzen, é Voilá.

Marius

Bezug
                
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:54 Do 14.09.2006
Autor: KnockDown

Hi,

danke fürs Willkommen und für die schnelle gute Antwort :)

Da bin ich garnicht drauf gekommen dass ich da mal die 3te versuchen könnte :-/ Naja jetzt hab ich wieder mal was dazu gelernt!

Ich wünsch dir noch nen schönen Tag :)

Bezug
                
Bezug
Terme | Regeln/Lösen: Binomische Formel
Status: (Frage) beantwortet Status 
Datum: 18:13 Do 14.09.2006
Autor: KnockDown

Ich habe das ganze jetzt nochmal durchgerechnet und dazu ist mir folgende Frage gekommen:

01. [mm] \bruch{(a-b)^2 - c^2}{a-b-c} [/mm]

02. [mm] \bruch{a^2-b^2-c^2}{a-b-c} [/mm]
Stimmt dieser Zwischenschritt so? Kann man einfach das aus [mm] (a-b)^2 [/mm] --> [mm] a^2 [/mm] + [mm] b^2 [/mm] machen?

03. [mm] \bruch{((a-b)+c)((a-b)-c}{a-b-c} [/mm]

04. a-b-c

Bezug
                        
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 14.09.2006
Autor: Teufel

Nein, (a-b)²=a²-2ab+b²!

Bezug
        
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Do 14.09.2006
Autor: JannisCel

Beim Schritt von 03 auf 04 hat sich ein kleiner Tipfehler eingeschlichen.

[mm] ((a-b)-c)((a-b)+c)/(a-b-c)=(a-b)^{2}+c^{2}/a-b-c [/mm]

Wenn Du den Term ((a-b)-c) im Zähler mit dem Nenner kürzt (wg. dem Assoziativgesetz haut das hin) kommst du zu Deiner Buchlösung, ganz so wie Rex es geschrieben hat.

Bezug
        
Bezug
Terme | Regeln/Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:41 Do 14.09.2006
Autor: KnockDown

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c} [/mm]


Ich hab jetzt noch ne Frage zu dem Lösen mit der 3ten Binomischen Formel.

Soweit ich weiß, kann amn doch nicht einfach [mm] (a-b)^2 [/mm] zu [mm] a^2-b^2 [/mm] umformen. Die dritte binomische Formel lautet doch aber:

[mm] a^2-b^2 [/mm] = (a-b)*(a+b)



Die Aufgabe lautete doch aber:

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c} [/mm]

Dann wurde gesagt dass man daraus folgendes macht:

[mm] \bruch{(a-b)^{2}+c^{2}}{a-b-c}=\bruch{((a-b)-c)((a-b)+c)}{(a-b-c)} [/mm]


Deshalb meine Frage wie kann man dann einfach diesen Schritt machen? Gibts hierfür noch einen Zwischenschritt?


Danke für eure Hilfe :)

Bezug
                
Bezug
Terme | Regeln/Lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Do 14.09.2006
Autor: Bastiane

Hallo!

> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}[/mm]
>  
>
> Ich hab jetzt noch ne Frage zu dem Lösen mit der 3ten
> Binomischen Formel.
>  
> Soweit ich weiß, kann amn doch nicht einfach [mm](a-b)^2[/mm] zu
> [mm]a^2-b^2[/mm] umformen. Die dritte binomische Formel lautet doch
> aber:
>  
> [mm]a^2-b^2[/mm] = (a-b)*(a+b)
>  
>
>
> Die Aufgabe lautete doch aber:
>  
> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}[/mm]

Also anfangs hast du geschrieben, dass die Formel so lautet:
[mm] \bruch{(a-b)^2-c^2}{a-b-c} [/mm] !?

Dann ist das a in deiner 3. binomischen Formel das hiesige (a-b) und das b in deiner 3. binomischen Formel ist das hiesige c. Damit ergibt sich dann direkt (ohne Zwischenschritt): [mm] (a-b)^2-c^2=((a-b)-c)((a-b)+c) [/mm]

Du kannst auch einfach von rechts nach links rechnen: [mm] ((a-b)-c)((a-b)+c)=(a-b)^2+(a-b)*c-c*(a-b)-c^2=(a-b)^2-c^2. [/mm] :-)

Nun alles klar?

Viele Grüße
Bastiane
[cap]

  

> Dann wurde gesagt dass man daraus folgendes macht:
>  
> [mm]\bruch{(a-b)^{2}+c^{2}}{a-b-c}=\bruch{((a-b)-c)((a-b)+c)}{(a-b-c)}[/mm]
>  
>
> Deshalb meine Frage wie kann man dann einfach diesen
> Schritt machen? Gibts hierfür noch einen Zwischenschritt?
>  
>
> Danke für eure Hilfe :)

Bezug
                        
Bezug
Terme | Regeln/Lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:04 Fr 15.09.2006
Autor: KnockDown

Hi Bastiane,

vielen Dank! Du kannst echt super erklären!!!

Ich hatte mich vertippt mit dem "+c" und "-c" klar hieß es "-c" sorry.

Ich wusste garnicht, dass ich das [mm] (a+b)^2 [/mm] als den einen Teil der 3ten Binomischen Formel sehen konnte und das [mm] -c^2 [/mm] als den anderen Teil!

Hieße das im Prinzip:

[mm] (a-b)^2 [/mm] - [mm] (c-d)^2 [/mm] = ((a-b)-(c-d))*((a+b)-(c+d)

Ginge das dann so?

Bezug
                                
Bezug
Terme | Regeln/Lösen: nein
Status: (Antwort) fertig Status 
Datum: 17:17 Fr 15.09.2006
Autor: Herby

Hi,

>  
> Ich wusste garnicht, dass ich das [mm](a+b)^2[/mm] als den einen
> Teil der 3ten Binomischen Formel sehen konnte und das [mm]-c^2[/mm]
> als den anderen Teil!
>  
> Hieße das im Prinzip:
>  
> [mm](a-b)^2[/mm] - [mm](c-d)^2[/mm] = ((a-b)-(c-d))*((a+b)-(c+d)
>  
> Ginge das dann so?

[notok]  die Formel lautet [mm] g²-h^2=(g-h)*(g+h) [/mm]

ich mach das jetzt mal bunt


[mm] \green{} [/mm]

[mm] \blue{g²}\red{-}\green{h²}=(\blue{g}\red{-}\green{h})*(\blue{g}\red{+}\green{h}) [/mm]

jetzt setze ich für

[mm] \blue{g}=\blue{(a-b)} [/mm]

[mm] \green{h}=\green{(c-d)} [/mm]

das gibt dann


[mm] \blue{(a-b)²}\red{-}\green{(c-d)²}=(\blue{(a-b)}\red{-}\green{(c-d)})*(\blue{(a-b)}\red{+}\green{(c-d)}) [/mm]


ich hoffe, du findest alles wieder :-)


Liebe Grüße
Herby


Bezug
                                        
Bezug
Terme | Regeln/Lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:18 Sa 16.09.2006
Autor: KnockDown

Danke! Jetzt hab ich es verstanden! Fand ich gut, dass du das farblich unterschieden hast, so konnte ich das besser sehen :)

Ich wünsch dir nen schönen Tag :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]